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ABSTRACT

We consider the problem of sequential hypothesis testing
when the exact pdfs are not known but instead a set of iid
samples are used to describe the hypotheses. We modify the
classical test by introducing a likelihood ratio interval which
accommodates the uncertainty in the pdfs. The test finishes
when the whole likelihood ratio interval crosses one of the
thresholds and reduces to the classical test as the number
of samples to describe the hypotheses tend to infinity. We
illustrate the performance of this test in a medical image
application related to tuberculosis diagnosis. We show in
this example how the test confidence level can be accurately
determined.

Index Terms— Uncertainty, sequential hypothesis test-
ing, sequential probability ratio test, binary hypothesis test.

1. INTRODUCTION

The classical sequential hypothesis test [1] relies on the per-
fect knowledge of the probability density function (pdf) for
each hypothesis. There are, however, many different practi-
cal scenarios, ranging from machine learning and information
theory to neuroscience, in which each hypothesis is character-
ized by a set of samples and the actual pdfs are unknown. We
have previously proposed several heuristics to manage uncer-
tainty in sequential tests for continuous random variables that
work well in practice [2, 3].

If the random variables are discrete, as we assume in this
paper, the sequential test can use the maximum likelihood es-
timates of the pdfs. However, the theoretical performance
guarantees of the sequential test, in terms of missdetection
and false alarm probabilities, do not hold for estimates of the
pdfs. In this paper we propose a sequential test that takes into
account the uncertainty in the pdf and fulfills the specified
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missdetection and false alarm rates, as the classical sequen-
tial test does with perfect statistical knowledge.

We introduce a new framework that models the uncer-
tainty in the pdfs estimation and carry it onto the sequential
test. The uncertainty in the pdf estimation is measured by
confidence intervals. The modified sequential test is based
on the likelihoods confidence intervals, which are computed
from the pdfs’ confidence intervals. We also provide tight
bounds for its performance. For simplicity, we develop the
proposed framework for the binary random variables, which
can be extended for any discrete random variable. In the bi-
nary case, both hypotheses are modeled by Bernoulli random
variables, which are estimated using samples. Despite its sim-
plicity this case is useful for any binary classifier application,
which include, among others, medical and military applica-
tions, decision making and distributed detection.

We specifically apply this framework to the medical diag-
nosis of tuberculosis (TB) patients. A local binary detector
analyzes microscopic auramine-stained images from patient
sputum to detect TB bacillus. The outputs of this detector
(bacillus/ not bacillus) are combined in our sequential test to
determine whether the patient is infectious.

The rest of the paper is organized as follows. We first
present our binary sequential probability ratio test in Section
2. Then, in Section 3 we show how this procedure can be ef-
fectively applied to the TB infectious diagnosis. Finally, in
the conclusions we remark our main contributions and pro-
pose some future work.

2. SEQUENTIAL HYPOTHESIS TESTING

We propose a sequential test for deciding whether the samples
from S = {z1, z2, . . .}, zi ∈ {0, 1}, were generated by:

H1: Bernoulli(p).
H0: Bernoulli(q).

The fixed probabilities p and q are unknown and a set of
binary observations are given to characterize them; SH1 =
{x1, . . . , xN} for hypothesis H1; and, SH0 = {y1, . . . , yM}
for H0.

We first review the classical sequential test and then we



modify it for accounting for imperfect information about both
hypotheses.

2.1. Sequential test

A sequential test reads one sample at the time from S and
decides if it has enough information to decide whether the
set belongs to hypothesis H1 or H0 or it needs to process the
next example. The sequential probability ratio test uses the
likelihood of the hypotheses to take such decision [1, 4]. We
can compute the likelihood of H1 for the first k samples of S:

Lk
H1

= pk∗(1− p)k−k∗

where k∗ =
∑k

i=1 zi. And the likelihood of H0:

Lk
H0

= qk∗(1− q)k−k∗

A sequential probability ratio test compares the Likelihood
Ratio γk for k = 1, . . .

γk =
Lk

H1

Lk
H0

with two thresholds πu, πl, which depend on PFA and PD,
the desired False Alarm and Detection probabilities, respec-
tively.

Test output =





H1, γk ≥ πu

H0, γk ≤ πl

continue, πl ≤ γk ≤ πh

in which πu = PD

PF A
and πl = 1−PD

1−PF A
[4]. Wald proved this

test finish with probability one [5]. When this sequential test
finishes its performance is given by P ′D and P ′FA such that

P ′FA ≤
PFA

PD

1− P ′D ≤
1− PD

1− PFA
(1)

P ′FA + 1− P ′D ≤ PFA + 1− PD

The obtained P ′FA and P ′D are close to the desired PFA and
PD for most practical detection and false alarms probabilities.

2.2. Confidence Intervals for binary random variables

To estimate p we are given SH1 . Now, suppose that n∗ tri-
als are equal to one. Thereby, the maximum likelihood (ML)
estimate for p is pML

n∗

N . However, other values of p could
result the same n∗. Many methods have been proposed to es-
timate a confidence interval for p, see [6] and the references
therein. Henderson and Mayer propose a Bayesian approach
using a Beta(a, b) distribution as a prior for p [7]. The poste-
rior distribution is consequently a Beta(n∗+a,N −n∗+ b).

The 100(1 − α)% confidence interval [pl, ph] for p can be
computed by taking the α/2 and 1 − α/2 quantiles of this
posterior distribution. If a pessimistic interval is needed the
Clopper-Pearson Interval or the Blith-Still interval [8] can be
used. Pessimistic intervals are preferred for critical applica-
tions.

2.3. Likelihood Ratios

When perfect statistical knowledge is available, the likelihood
of each hypothesis is a number. We have model the uncer-
tainty on p, as a confidence interval, which is the same as to
model the hypothesis as a collection of pdfs. For each one
of these pdfs we can obtain a likelihood value, therefore we
get a likelihood interval which accounts the uncertainty on the
hypothesis.

To construct such interval [Lk
l , L

k
h] we need to find the

maximum and minimum values of Lk(p̂) for all p̂ in [pl, ph].
Lk(p̂) is maximized for pmax = k∗

k . If pmax lies in the [pl, ph]
interval, then Lk

h = Lk(pmax) and Lk
l is the minimum of

Lk(ph) and Lk(pl), because the likelihood function is con-
cave. Otherwise, when pmax is outside [pl, ph], Lk(ph) and
Lk(pl) define the likelihood interval. Therefore, the 100(1−
α)% confidence interval for Lk(p̂) is given by:

[Ll, Lh] =

{
[min(L(pl), L(ph)), max(L(pl), L(ph))] pmax /∈ [pl, ph]

[min(L(pl), L(ph)), L(pmax)] pmax ∈ [pl, ph]

where we have dropped the superscripts to avoid cluttering
the notation.

We denote the likelihood intervals of hypothesis H1 and
H0 as [LH1,l, LH1,h] and [LH0,l, LH0,h] respectively. The
minimum value of the confidence interval of the likelihood
ratio LH1

LH0
is reached when LH1 is minimum and LH0 max-

imum, that is, LH1,l

LH0,h
and its maximum value is LH1,h

LH0,l
. The

100(1 − αH1)(1 − αH0)% confidence interval for the quo-
tient LH1

LH0
results

[LRl
H1,H0

, LRh
H1,H0

] =
[
LH1,l

LH0,h
,
LH1,h

LH0,l

]

2.4. Sequential hypothesis testing

The proposed statistical test finishes either when LRl
H1,H0

is
larger than πu, and selects H1, or when LRh

H1,H0
is less than

πl, and selects H0. This sequential test waits until the whole
interval crosses one threshold.

With probability Pc = (1−αH1)(1−αH0) the likelihood
ratio is in the interval [LRl

H1,H0
, LRh

H1,H0
] and the sequential

test provides the performance guarantees shown in (1). In
order to bound our sequential test performance, we assume
PD,n = 0 and PFA,n = 1 for the other cases. The final
sequential test performance is bounded by:

PD,end ≥ PcP
′
D + (1− Pc)PD,n = PcP

′
D

PFA,end ≤ PcP
′
FA + (1− Pc)PFA,n = PcP

′
FA + (1− Pc)



This performance is dominated by Pc.
This test explicitly shows the relation among the global

performance requirements, the uncertainty in the hypotheses
and the number of test samples. When high detection proba-
bilities and low false alarm rates are needed: large confidence
intervals for p and q have to be used as Pc must be very close
to 1; this makes a large confidence interval for the likelihood
ratio and the sequential test needs many samples to finish.
Low training sample sizes bring larger intervals for the same
confidence and more test samples are needed to achieve the
same performance. Furthermore, the maximum value of Pc

is limited by the confidence intervals of p and q. If those in-
tervals overlap the test never finish. Arbitrary performance is
not possible with uncertainty in the hypotheses, even with an
infinite number of samples.

3. EXPERIMENTS

Nowadays Tuberculosis (TB) is an important health prob-
lem [9]. To assist the human expert, automated machine-
learning-based diagnosis techniques perform bacilli recog-
nition in auramine-stained microscopic images of the spu-
tum [10, 11]. Those one-stage approaches classify the patient
as infectious if a bacillus is detected. However, the bacilli
classifier needs to have high specificity (low false-alarm rate)
to attain a good patient performance.

To overcome this difficulty we propose a two-stages ap-
proach to this problem. We add a patient classifier which
combines the bacilli classifier outputs and makes the sys-
tem more robust against the bacillus classifier false alarm
rate. The system analyzes the patient sputum image by im-
age. First, the image is divided in small pieces which are
examined by the bacilli classifier. Then, the patient classifier,
which is a sequential test, merges the bacilli classifier outputs
and determines if its confidence is enough to make a deci-
sion taking into account its performance requirements. When
more confidence is needed another image is analyzed. The
system diagram is shown in Figure 1.

This approach tolerates the false alarm rate of the bacillus
classifier much better than the one-stage ones because the per-
formance requirements can be set in the patient classifier. It
is also appropriate for this application because almost as im-
ages as desired are available to the automated classification
system.

The experimental database has 44 Non-Infectious patients
(NIP) and 6 infectious patients (IP). Each patient has about
300 1600x1200 RGB images which have been acquired with a
20x microscope. 29 NIP and, 3 IP have been used for training
purposes and the rest for testing.

3.1. Bacilli classifier

The bacilli detector decides when a small piece of the im-
age (region) contains a bacillus. A Support Vector Machine

Classifier
Patient

Feature
Extraction Classifier

Bacilli





non infectious

infectious

another image

Fig. 1. Automated detection of infectious patients system.

(SVM) classifier [12] has been selected for this task. Each
region has dimension 37 pixel × 37 pixel × 3 colors = 4107,
which is quite high. To reduce dimensionality principal
component analysis (PCA) [13] has been applied to reduce
the problem to 200 dimensions, which greatly simplifies the
learning task and lowers its burden. Finally, the classifier
complexity has been reduced from 4234 to 200 support vec-
tors to speed up it by using the preimage method [14].

The training set contains roughly 10000 regions labeled as
bacillus, which include real bacillus, labeled by an expert, and
rotations and/or displacements of them. About 20000 regions
have been selected for background (regions where the bacillus
is not present) from the training NIP.

3.2. Patient Classifier

The patient classifier is the sequential test proposed in Sec-
tion 2. First this problem must be modeled as a binary hy-
pothesis testing one. IP and NIP classes are very rich, there-
fore the training patients in each class can not be mixed in
a single model. Hypothesis H1 is modeled by the worst IP,
which is the one with less bacilli detections; and hypothesis
H0 by the worst NIP, which is the one with more bacilli de-
tections. For H1 hypothesis it has been selected an IP with 36
bacilli detections in 441696 regions; and, for H0 a NIP with
26 bacilli detections in 392160 regions. The bacillus proba-
bility of H0 (qML = 6.62× 10−5) is just the false alarm rate
of the bacilli classifier in the worst NIP. The corresponding
probability for H1 (pML = 8.15 × 10−5) is the sum of false
alarms plus detections rates in the worst IP.

The test patients were analyzed starting with αH1 =
αH0 = 10−5 and PFA = 1−PD = 10−6 by examining their
available images. The quality constraints were lowered each
time more samples were needed to meet them. The results of
the comparison between our method and the classical one are
showed in Tables 1 and 2. The first three columns show the
true hypothesis of the patient, an identifier and the available
number of regions. The five next columns show the decision
made by the patient classifier; when the initial constraints
were met; the final PFA,end and PD,end achieved by the test
with the available samples; and, the final number of samples
used by the test. Both test perform well. But our test is more



class id reg# dec. done PF A,end PD,end reg. used
H1 IP1 404544 H1 no 0.0054 0.99461 319000
H1 IP2 390784 H1 no 0.0003 0.99968 350000
H1 IP3 434816 H1 no 0.0305 0.96952 434816
H0 NIP1 434816 H0 no 0.0013697 0.99863 434000
H0 NIP2 401792 H0 no 0.0042189 0.99578 401000
H0 NIP3 410048 H0 no 0.069017 0.93098 366000
H0 NIP4 456832 H0 no 0.0010217 0.99898 453000
H0 NIP5 426560 H0 no 0.0023449 0.99766 426000
H0 NIP6 377024 H0 no 0.023723 0.97628 369000
H0 NIP7 467840 H0 no 0.0015859 0.99841 465000
H0 NIP8 415552 H0 no 0.0018363 0.99816 412000
H0 NIP9 408672 H0 no 0.015165 0.98484 398000
H0 NIP10 410048 H0 no 0.0020249 0.99798 408000
H0 NIP11 412800 H0 no 0.0065601 0.99344 412800
H0 NIP12 410048 H0 no 0.076633 0.92337 332000
H0 NIP13 437568 H0 no 0.0029946 0.99701 437000
H0 NIP14 443072 H0 no 0.0018363 0.99816 442000
H0 NIP15 448576 H0 no 0.0013697 0.99863 448000

Table 1. Classical sequential test decisions and confidences.

class id reg# dec. done PF A,end PD,end reg. used
H1 IP1 404544 H1 no 0.085157 0.91484 312000
H1 IP2 390784 H1 no 0.076633 0.92337 350000
H1 IP3 434816 H1 no 0.099921 0.90008 398000
H0 NIP1 434816 H0 no 0.080774 0.91923 396000
H0 NIP2 401792 H0 no 0.085157 0.91484 348000
H0 NIP3 410048 H0 no 0.10544 0.89456 354000
H0 NIP4 456832 H0 no 0.080774 0.91923 396000
H0 NIP5 426560 H0 no 0.080774 0.91923 423000
H0 NIP6 377024 H0 no 0.094712 0.90529 319000
H0 NIP7 467840 H0 no 0.080774 0.91923 436000
H0 NIP8 415552 H0 no 0.080774 0.91923 412000
H0 NIP9 408672 H0 no 0.089797 0.9102 387000
H0 NIP10 410048 H0 no 0.080774 0.91923 396000
H0 NIP11 412800 H0 no 0.085157 0.91484 401000
H0 NIP12 410048 H0 no 0.10544 0.89456 314000
H0 NIP13 437568 H0 no 0.085157 0.91484 375000
H0 NIP14 443072 H0 no 0.080774 0.91923 423000
H0 NIP15 448576 H0 no 0.080774 0.91923 410000

Table 2. Our sequential test decisions and confidences.

pessimistic as we see in the achievable PD,end and PFA,end.
On the other hand, the classical test gives overconfident prob-
abilities because it have few samples to estimate the bacillus
probability, which is very low.

4. CONCLUSIONS AND FUTURE WORK

We have proposed a novel sequential probability ratio test that
models the uncertainty when the exact pdfs are unknown. We
also obtained bounds of the maximum attainable performance
of the test. We have developed it for the interesting case of
binary hypotheses; the extension to general discrete models
will be presented in a future work. We have compared the
performance of this test with the classical test in the diag-
nosis of tuberculosis and have shown how the uncertainty in
the pdfs estimates leads to more samples for the same quality
constraints in terms of false alarm and detection probabilities.
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